baldrattii, C. sprengeri. The flower of Angolluma semitubiflora is intermediate between these extremes in having a distinct tube that is no longer than the corona and gynostegium, which are visible in the mouth of the tube. This situation is also seen in *A. decaisneana* and *Caralluma vbratilis*. *Caralluma vbratilis* also has a saccate growth habit, but the outer corona is more deeply saccate. In *A. decaisneana* the outer corona resembles that of the new species in being shallowly saccate, but the sides of the “sac” are fused with only the lower half of the inner corona (Fig. 5). The corolla of *A. decaisneana* has dark red lobes that are flat, in contrast to the revolute lobes of the new species.

Whilst examining some stapeliad material in Kew Herbarium I came across the specimen Bally S. 76, labelled *Caralluma subterranea* Bruce & Bally, and I recognised this as identical with my Kisite Crater collection. Presumably Bally’s specimen was assigned to *C. subterranea* because of the subterranean shoots. On the label, Bally had stated: “Very luxuriant and much sturdier than elsewhere.” Apart from being a more sturdy plant, *A. semitubiflora* also differs from *C. subterranea* in the tubular corolla, the saccate outer corona, and absence of projections on the inner corona lobes. Material that I collected at the type locality of *A. semitubiflora* has bright yellow flowers. On the label of his specimen from the Ngorongoro Crater, which is about 65 km southwest of Kisite Crater, Bally notes: “Maroon and yellow varieties found in great numbers.” As Bally S. 76 is in spirit it has lost its colour, and so details of the colour pattern on the maroon variant are not known.

Kisite Crater is a small extinct volcano in the Rift Valley of northern Tanzania. The type material of *Angolluma semitubiflora* was found growing beneath a small shrub on the east rim of the crater. The area has shallow soil overlying lava, with very sparse low vegetation consisting of scattered shrubs and clumps of grass with much bare soil and exposed lava. The sides and floor of the Ngorongoro Crater have a similar kind of vegetation, but with a greater cover, presumably because of the lower grazing pressure in what is a conservation area. On the label for his specimen, Bally noted that the ledge on which he found the plant was used as a vantage point by hyaena and lion.

References


A. L. SILER

Marcus Eugene Jones was disdainful of Britton and Rose for erecting the monotypic genus *Utahia* for *Echinocactus sileri* Engelmann. The species was named for A. L. Siler, who sent a single plant to Dr. George Engelmann, Missouri Botanical Garden, in 1883. It remained a “lost” plant until after the publication of Britton and Rose’s *Cactaceae* in the early 1920’s. Wrote Jones in *Contributions to Western Botany*, No. 16, 1930: “Living in Kanab, Utah, was an old farmer who became interested in Major Powell’s survey of the Grand Canyon; Powell’s headquarters were at Kanab. He figured that he might make some money out of collecting native plants and sending them east and to Europe. He was A. L. Siler, a kindly and uneducated old man, a Mormon who had more than one wife. He was about 7 feet tall, and as slim as a rail, and wore about a No. 14 shoe. He was awkward and uncouth, but a sincere man. He had a ranch up on the plateau among the pinons and junipers at a place called Ranch, where I visited him in 1890. He specialized in cacti, and sent his stuff to Engelmann for naming. He explored the steep slopes of the Grand Canyon and got many interesting species. At Pipe Springs, Arizona, he found a cactus which Engelmann named *Echinocactus sileri* in his honor. Apparently but one specimen of it is extant and that a dried plant in the herbarium of the Missouri Botanical Garden from the type locality.”

Larry W. Mitich